部分相干成像下的空间线宽确定

杨 健 伍树东 王之江

(中国科学院上海光学精密机械研究所)

提 要

经过推导,得到部分相干照明条件下轴对称光学系统的直边阈值表达式;对有限扫描缝宽,也得到相应的直边阈值。提出确定阈值的方法;并对复振幅直边线条像进行数值计算,结果表明,阈值表达式与计算值相符,准确度达到 0.01 μm。

一、部分相干直边阈值

从直边像确定其几何边缘位置,必须知道对应于边缘的像强度值,即直边阈值;边缘的确定是集成电路线宽测量中的重要问题^[1~3]。

直边物体的振幅透射函数可表为:

$$F(x) = \begin{cases} 1 & (x \ge 0), \\ \sqrt{T} \exp i\varphi & (x < 0)_{\circ} \end{cases}$$
(1)

D. Nyyssonen^[2]从相干成像公式出发,导出了直边阈值:

$$T_{c} = 0.25(1 + T + 2\sqrt{T}\cos\varphi),$$
 (2)

用类似方法可导出非相干成像的直边阈值:

$$T_n = 0.5(1+T)_o$$
 (3)

光学显微镜成像一般是部分相干照明,系统相干性质可用相干参数 R 表征其值小,则 相干度高。 D. Nyyssonen 选用 R 值较小的测试条件,并以相干阈值近似值代替部分相干 阈值,这种方法使测试条件受到限制,且直边定位准确度不能再提高。下面推导部分相干直 边阈值。

为简明起见,考虑一维成像系统,部分相干准单色光照明下的像强度是[4].

$$I(x) = \iint_{-\infty}^{\infty} J(x_0 - x'_0) F(x_0) F^*(x'_0) h(x - x_0) h^*(x - x'_0) dx_0 dx'_0,$$
(4)

式中 $J(x_0 - x_0)$ 是照明光在物面 x_0 和 x_0 两点间的强度; F是物振幅透射函数, 对于直边物体, 其形式由式(1)给出; h是成像系统的点扩散函数。

设显微成像系统是轴对称的(非对称引起定位误差,是不可取的),并用 Köhler 照明方式。 为求 *x*=0 处的相对光强,先引入归一化因子 *I*(∞);由于 *h* 有显值的区域比物面被照 明区域小得多,通过(4)式可得:

$$I(\infty) = \iint_{-\infty}^{\infty} J(x_0 - x'_0) h(x_0) h^*(x'_0) dx_0 dx'_0 dx_0 dx'_0 dx_0 dx'_0 dx'_0$$

收稿日期: 1983年12月16日; 收到修改稿日期: 1984年4月17日

此积分可化成 $I(\infty) = 2A + 2B$, 其中

$$A = \iint_{0}^{\infty} J(x_{0} - x'_{0})h(x_{0})h^{*}(x'_{0}) dx_{0} dx'_{0},$$
$$B = \iint_{0}^{\infty} J(x_{0} + x'_{0})h(x_{0})h^{*}(x'_{0}) dx_{0} dx'_{0},$$

将(1)式代入(5)式得:

$$I(x) = \int_{0}^{\infty} J(x_{0} - x'_{0})h(x - x_{0})h^{*}(x_{0} - x'_{0})dx_{0} dx'_{0}$$

+ $\int_{0}^{\infty} J(x_{0} - x'_{0})h(x + x_{0})h^{*}(x + x'_{0})dx_{0} dx'_{0}$
+ $\sqrt{T}e^{j\pi}\int_{0}^{\infty} J(x_{0} + x'_{0})h(x - x_{0})h(x + x_{0})dx_{0} dx'_{0}$
+ $\sqrt{T}e^{-j\pi}\int_{0}^{\infty} J(x_{0} + x'_{0})h(x + x_{0})h(x - x'_{0})dx_{0} dx'_{0}$ (6)

令 x=0,得边缘的强度值为

 $I(\mathbf{0}) = (1+T)A + 2B\sqrt{T}\cos\varphi_{o}$

因此,部分相干成像的直边阈值为

$$T_{p} \equiv I(0)/I(\infty) = 0.5(1+T)a + 0.25(1+T+2\sqrt{T}\cos\varphi)(1-a)$$

= $aT_{n} + (1-a)T_{o}$, (7)

其中

$$a = \frac{A-B}{A+B}$$

 T_o 和 T_n 分别由(2)式和(3)式确定。(7)式表明阈值 T_p 是非相干阈值和相干阈值的带权叠加;参数 α 与直边的参量 $T_{\alpha} \varphi$ 无关,是一个表征光学系统特征的参量。

二、有限扫描缝宽情况

在光电扫描显微镜中,要用一狭缝来测量像点强度,取狭缝函数

$$S(x) = \begin{cases} 1 & (|x| \le l/2), \\ 0 & (|x| > l/2)_{o} \end{cases}$$
(8)

加狭缝后接收到的光强 $\overline{I}(x)$ 是 S(x) 与光强 I(x) 的卷积, 边缘处 $\overline{I}(0) = \int_{-l/2}^{l/2} I(y) dy$ 。将 I 的表达式代入上式得:

$$\overline{I}(0) = \overline{A}(1+T) + 2\overline{B}\sqrt{T}\cos\varphi, \qquad (9)$$

其中 $\overline{A} = \int_{-l/2}^{+l/2} \iint_{0}^{\infty} J(x_0 - x'_0) h(y - x_0) h^*(y - x'_0) dx_0 dx'_0 dy,$

$$\overline{B} = \int_{-l/2}^{l/2} \iint_{0}^{\infty} J(x_0 + x'_0) h(y + x_0) h^*(y - x'_0) dx_0 dx'_0 dy_0$$

用 Ī(∞) 作为归一化因子,得到有狭缝时直边阈值:

$$\overline{T}_{g} = \overline{a}T_{n} + (1 + \overline{a})T_{o}$$
,(10)其中 $\overline{a} = (\overline{A} - \overline{B})/(\overline{A} + \overline{B})_{o}$ 可以看出. (10)式与(7)式的不同点在于 A 和 B 换成了 A 和 B; 这样, 缝宽对盲边阈值的影

可以看出,(10)式与(7)式的不同点在于 A 和 B 换成 J A 和 B;这样,缝宽对直边阈值的影响可完全归结到数 ā 中,只要知道了系统的 ā 值,就能用(10)式对直边准确定位。

为确定参数 \bar{a} , 令(1)式的 T = 1, $\varphi = \pi$, 代入(10)式得到 $\bar{T}_{\rho} = \bar{a}$ 。这说明 $\bar{a} \neq \pi$ 相位直 边物体成像后对应几何边缘的相对光强值;它是一个可测量,也可计算得到。

三、实验方法

从(6)式可知 π 相位直边像对称于 x=0 点。有限扫描缝宽也不会影响其对称 性。这样,通过测量 π 相位直边像,可由对称中心点的相对光强得到 \hat{a} 值。

获得光学系统及直边物的某些参数值后,也能用标量衍射积分计算得到边缘点光强值, 但阈值公式法比这简便,而且,本文的方法还可适用于不知像差大小、不知扫描缝宽及相干 参数 R 的光学系统。在推导(2)和(3)式中,可允许光学系统有轴对称像差,即在相干或非 相干情况下,对称像差不影响直边像的边缘强度值,对相干情况的离焦像已有计算结果表明 确是如此^[53]。在部分相干情况下,直边像边缘处光强要随像差而改变^[13];当引入参数 ā,并知 道了 T 和φ后,可把光学系统当作一"黑箱",通过考察π相位直边在此"黑箱"的行为,能确 定直边像边缘处光强值,进行定位。

线宽的测量可近似地认为两条边成像互不影响,通过直边阈值确定两条边的位置,其间 距就是线宽值。

四、数值计算结果

部分相于成像是物函数的非线性叠加,其数值计算较繁,作者使用了 Kintner¹⁶¹ 的方法计算无像差光学系统的直边线条像。

图1是宽为2µm的线在三种相干参数下的像轮廓,随着 R 由小到大,曲线由快速到平缓变化,边缘点光强值由小到大,用相干阈值的定位误差也将加大。 阈值 法不能消除两条边相互影响所导致的定位误差,因此导 找合适的 R 值,使其影响较小;轮廓 b 在 x=0 处的光强 值接近于 1,此时影响较小。

图 2 是相干参数 R=0.4/0.65, 不 同 线 宽 的 线 条 像。随着线宽减小,两条边的相互影响增加,以致曲线形

状改变。此时, $0.5 \mu m$ 最窄线宽的定位误差, 用部分相干阈值时是 $0.010 \mu m$, 相干阈值时 是 $0.022 \mu m$ (见表 3)。

从图1和图2可见, ∞=0处的光强随参数变化较大,以此作为归一化因子将引起额外的定位误差,应用 I(∞)作归化因子,此值可在一较大通光区测出。

图 ³ 是 π 相位直边像, 它们的光强最小值都落在几何边缘点, 且其轮廓对称于此点, 边缘点光强值随 *R* 增大而减小, 具体数值见表 1。

表1 #相位边缘处光强 ā 与 R 的关系,除聚光镜数值孔径 NA。外,其余参数同图 3

Table 1Relations between the coherence R and the normal intensity \ddot{a} at the phase edgemicroscope parameters same as Fig. 3 except condenser NA_c

NA _c	0.0	0.1	0.4	0,65	1.50
$R = N A_c / N A$	0.0	0,15	0.62	1.00	2.31
ā	0.092	0.092	0.125	0.364	0.849

表2 不同相干参数 R 下的定位误差 J,除聚光镜数值孔径 NA。外,其余参数同图 1

Table 2 Edge location errors with different coherence parameters, microscope parameters

聚光镜数值孔径 NAc		0.0	0.3	0.4	0.5	0.65	1.5	
边缘光弦	边缘光强 <i>l_e</i> 0.256 0.274		0.281	0.286	0.333	0.454		
相干定位 —	$T_{ m c}$	0.25						
	⊿(µm)	0.002	0.009	0.013	0.014	0.038	0.093	
部分相干定位一	T_{p}	0,273		0.281		0.841	0.462	
	$\Delta(\mu m)$	- 0.005	_	0.000		-0.004	-0.004	

same as Fig. 1 except condenser NA_o

图 3 不同线宽 W 的定位误差 4 除线宽外其,余参数同图 2

Table 3 Edge location errors of different linewidths W with parameters

same as Fig. 2 except linewidth

线宽 <i>W</i> (µm)		0.5	0.7	1.5	2.0	3.0	
边缘点光强 Ie		0.315	0.289	0,278	0.281	0.279	
相干定位	T_{c}	0.250					
	$\Delta(\mu m)$	0.022	0,014	0.011	0.013	0.013	
部分相千定位	$\overline{T_p}$	0.281					
	$\Delta(\mu m)$	0.010	0.003	-0.001	0.000	-0.001	

表 4 不同背景透过率 T 时的定位误差 Δ 聚光镜数值孔径 $NA_c = 0.4$,相位差 $\varphi = \pi/2$, $\sqrt{T} = 0.30, 0.40, 0.50, 0.60, 其余参数同图 1$

Table 4 Edge location errors with different bach ground transmittances T,

condenser $NA_{e} = 0.4$, phase difference $\varphi = \pi/2$, $\sqrt{T} = 0.30, 0.40, 0.50, 0.60$

背景振幅透过率 🗸 T		0.30	0.40	0.50	0.60
边缘点光强 I。		0,307	0.326	0,351	0,382
相干定位	T _c	0.273	0.290	0.313	0.340
	$\Delta(\mu m)$	0.015	0.017	0.021	0.029
部分相干定位	\overline{T}_p	0.306	0.326	0.351	0,382
	$\Delta(\mu m)$	0.000	0.000	0.000	0.000

other parameters same as Fig. 1

对不同相干参数,线宽及不同背景透过率等多种情况,用部分相干阈值(10)式的定位误差同数值计算结果的比较见表 2~4;用相干阈值(2)式的定位误差也列于表内作为对照。表中 *I*。是数值计算得到的边缘处光强, *A* 是由阈值公式定位而引起的定位误差(阈值对应的位置到几何边缘的距离)。

从上列表中可见,用阈值 T,的定位准确度 很高,在计算结果中最大定位误差为 0.01 μm。计算线条像只用了周期近似,通过计算和分析认为相对光强的误差约为 0.001, 使用的 Alpha Micro 微计算机,六十像元的一条轮廓计算时间约为 30 秒。

五、讨 论

1. 为从(10)式中求 \overline{T}_{p} 值,必须已知 T 和 φ_{o} T 的确定较容易,在较大的透光区域和 不透光区域测出 I_{max} 和 I_{min} ,则 $T = I_{min}/I_{max}$; φ 的确定比较困难些,可用其它方法测量,作 者认为也可以改变系统参数 \overline{a} ,在多次线宽测量中获取 φ 的信息。

 对于无像差光学系统,当物振幅透射函数是实数时,可根据像在焦平面前后的对称 性确定调焦位置。对其它情况下的调焦判定,一般来说无规可循。本文提出的判断方法是: 知道了 a、T 和 φ 后,使被测线宽值最小时的调焦是最佳的。

3. 对成像公式(4)有意义的是准单色光照明。 考虑光谱较宽情况, 像强度必须对波长

进行一次积分,是强度的线性叠加。如果π相位直边对 整个光谱是基本一致的,并且被测物在此区域色散不明 显,则在多色光照明下,也有类似式(10)的直边阈值表达 式,这使得有可能在一般光源照明下进行线宽精密测量, 对实际工作带来便利。

4. 在制备 # 相位直边时, 一般会有些吸收, 无像差 计算结果表明, 当 T 小至 0.8 时, 的确 ā 的误差还很小 (见图 4)。

5. 计算结果表明,当扫描缝宽在一定范围增大时,像轮廓变化不大,见图5。因此可在

测量中适当加大缝宽以提高信噪比。

6. 用普通显微镜能观察大相位物体,对相位差较小的物体就不灵敏。图 6 给出了相干 参数 R=0.9/0.9,相位差分别是 π , $\frac{\pi}{2}$ 和 $\frac{\pi}{4}$ 的直边像。

7. 前面考虑的都是无穷陡的直边,实际上大多不如此,因此有必要探讨如何用光学方法获得边的形状。在线的厚度较大时,该用矢量理论处理^[2]。

六、结 论

在部分相干成像条件下,本文导得直边阈值表达式。部分相干照明是光学显微观察较 一般的情况。因而利用本文结果,线宽的测定可以在非常普通的条件下进行。

本工作得到中国科学院上海光学精密机械研究所信息组同志帮助,在此谨表谢意。

参考文献

- [1] D. Nyyssonen; SPIE, 1979, 194, 34.
- [2] D. Nyyssonen; J. Opt. Soc. Am., 1982, 72, No. 10 (Oct), 1425.
- [3] D. Nyyssonen; Appl. Opt., 1977, 16, No. 8 (Aug), 2223.
- [4] M. Born and E. Wolf; «Principles of Optics», (6th ed Pergmon Press, 1980), 529.
- [5] J. D. Cuthbert; Solid State Tech., 1977, 20, No. 8 (Aug), 59.
- [6] E. C. Kintner; Appl. Opt., 1978, 17, No. 17 (Sep), 2747.

Determination of spatial linewidth with partially coherent imagery

YANG JIAN WU SHUDONG AND WANG ZHIJIANG (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

(Received 16 December 1983; revised 17 April 1984)

Abstract

In this paper, the straight-edge-threshold in an axis-symmetrical imaging system is deduced based on the theory of partial coherence, and the effect of the scanning slit width is also considered. An experimental method is discussed with a π phase edge plate. The comparison of the calculated value and the threshold shows a good agreement. The location accuracy reaches to 0.01 μ m.